煤炭工程 ›› 2023, Vol. 55 ›› Issue (11): 160-166.doi: 10. 11799/ ce202311027

• 研究探讨 • 上一篇    下一篇

煤矸图像识别网络的小波变换优化

师亚文,李务晋,吕子奇   

  1. 1. 国能神东煤炭集团洗选中心,陕西 榆林 719315
    2. 中国矿业大学(北京)化学与环境工程学院,北京 100083

  • 收稿日期:2022-10-20 修回日期:2022-11-24 出版日期:2023-11-20 发布日期:2025-04-07
  • 通讯作者: 李务晋 E-mail:lwj_cumtb@163.com

Research on the coal and gangue image classification network improved by using wavelet transform

  • Received:2022-10-20 Revised:2022-11-24 Online:2023-11-20 Published:2025-04-07

摘要:

为提高煤与矸石分选的自动化与智能化程度, 针对煤与矸石在线识别的过程中, 图像特征值需人工选取且模型鲁棒性差的问题, 以现场采集的煤与矸石原始图像作为输入, 建立了一种基于卷积神经网络的煤与矸石图像识别模型。通过反卷积对卷积神经网络进行可视化处理, 分析了卷积神经网络提取煤与矸石图像特征的过程, 并以此为基础在卷积神经网络中设置小波变换层, 利用Biorthogonal小波对原始图像进行分解, 将高频系数与原始图像结合后进行卷积操作, 优化了模型的识别效果。结果表明: 该识别模型能够对煤与矸石图像进行有效识别, 设置小波变换层能够提升网络训练效率与识别准确率, 且小波变换第二层高频系数与原始图像结合输入卷积层时, 网络模型效果最优。在不同光照条件下, 相比于传统识别模型, 该模型有更好的适应能力, 对测试集的识别准确率达到93%。

关键词: 煤矸智能分选, 机器视觉, 小波变换层, 卷积神经网络

Abstract:

In order to improve the degree of automation of separating coal and gangue, the coal and gangue original image collected on site is used as input to establish a coal and gangue image recognition model based on convolutional neural network in this paper to solve the image feature values need to be manually selected and the robustness is poor. The convolutional neural network is visualized by deconvolution, and the process of extracting coal and gangue image features by convolutional neural network is analyzed. Decomposing the original image by biorthogonal wavelet, the wavelet transform layer is set up in the convolutional neural network. The convolution operation is performed by combining the high frequency coefficient with the original image to optimize the recognition effect of the model. The results show that this model can effectively differentiate the coal and gangue images and has strong generalization ability. Setting the wavelet transform layer can improve the network training efficiency and recognition accuracy. When combining the second layer high-frequency coefficient of wavelet transform with the original image, the network model is optimal. Compared with the traditional recognition model, the model has better adaptability under different illumination conditions, and the recognition accuracy of the test set reaches 93%.

中图分类号: